Design of Anion Exchange Membranes and Electrodialysis Studies for Water Desalination

نویسندگان

  • Muhammad Imran Khan
  • Rafael Luque
  • Shahbaz Akhtar
  • Aqeela Shaheen
  • Ashfaq Mehmood
  • Sidra Idress
  • Saeed Ahmad Buzdar
  • Aziz ur Rehman
چکیده

Anion exchange membranes are highly versatile and nowadays have many applications, ranging from water treatment to sensing materials. The preparation of anion exchange membranes (AEMs) from brominated poly(2,6-dimethyl-1,6-phenylene oxide) (BPPO) and methyl(diphenyl)phosphine (MDPP) for electrodialysis was performed. The physiochemical properties and electrochemical performance of fabricated membranes can be measured by changing MDPP contents in the membrane matrix. The influence of a quaternary phosphonium group associated with the removal of NaCl from water is discussed. The prepared membranes have ion exchange capacities (IEC) 1.09-1.52 mmol/g, water uptake (WR) 17.14%-21.77%, linear expansion ratio (LER) 7.96%-11.86%, tensile strength (TS) 16.66-23.97 MPa and elongation at break (Eb) 485.57%-647.98%. The prepared anion exchange membranes were employed for the electrodialytic removal of 0.1 M NaCl aqueous solution at a constant applied voltage. It is found that the reported membranes could be the promising candidate for NaCl removal via electrodialysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrodialysis Heterogeneous Anion Exchange Membranes Filled with TiO2 Nanoparticles: Membranes' Fabrication and Characterization

In the current research, polyvinylchloride based mixed matrix heterogeneous anion exchange membranes were prepared by a solution casting technique. Titanium dioxide nanoparticles were also utilized as inorganic filler additive in the membrane fabrication. The effect of TiO2 nanoparticles concentration in the casting solution on the membrane physico-chemical properties was studied. Membrane wate...

متن کامل

Monopolar and Platinum Interfaced Bipolar Membrane Electrodialysis: Experimental Assessment Using Synthetic Salt Solution Heterogeneous Cation Exchange Membranes

In this study, polystyrene ethylene butylene polystyrene (PSEBS) was functionalized to prepare mono and bipolar ion exchange membranes. In the case of the bipolar membrane, platinum was used as the intermediate layer. NaCl solution of concentration ranging from 5 g/L to 25 g/L was used as the feed solution. A commercially procured ion exchange membrane made of polystyrene divinyl benzene was al...

متن کامل

Reverse Electrodialysis for Salinity Gradient Power Generation: Challenges and Future Perspectives

Salinity gradient energy, which is also known as Blue energy, is a renewable energy form that can be extracted from the mixing of two solutions with different salinities. About 80% of the current global electricity demand could potentially be covered by this energy source. Among several energy extraction technologie...

متن کامل

The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation

Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange me...

متن کامل

How Operational Parameters and Membrane Characteristics Affect the Performance of Electrodialysis Reversal Desalination Systems: The State of the Art*

Operating parameters and membrane characteristics strongly affect the performance of electrodialysis reversal systems. The most impactful factors are applied voltage, flow rate, temperature, initial feed composition, and ion exchange membrane characteristics; the pH of the feed also has an effect, although to a lesser extent. To determine more precisely how all of these factors impact performan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016